Surfactant protein A and D differently regulate the immune response to nonmucoid Pseudomonas aeruginosa and its lipopolysaccharide.

نویسندگان

  • Philip Bufler
  • Bettina Schmidt
  • Daniela Schikor
  • Adolf Bauernfeind
  • Erika C Crouch
  • Matthias Griese
چکیده

We investigated the role of the surfactant proteins (SPs) A and D in the pulmonary immune defense of nonmucoid strains of Pseudomonas aeruginosa, the most etiologic agents of nosocomial Pseudomonas pneumonia. We first examined the interactions of recombinant human SP-D dodecamers and purified natural or recombinant human SP-A with two smooth, and two rough, clinical isolates of nonmucoid P. aeruginosa. SP-D bound to all four isolates, but agglutinated only one rough and one smooth strain. SP-D functioned as an opsonin to enhance the uptake of all four strains by the human monocytic cell line Mono Mac 6 (MM6). SP-D also enhanced tumor necrosis factor-alpha secretion by MM6 cells in response to purified lipopolysaccharide (LPS) isolated from the rough, but not the smooth, strains. Although SP-A bound to all four strains, it did not cause bacterial aggregation or enhance uptake. It showed small but statistically significant inhibitory effects on the cytokine response of MM6 cells to one strain of smooth organisms, but did not significantly alter the response to purified LPS. This study in combination with previously published data strongly suggests that SP-D may play important roles in the local innate pulmonary defense against nonmucoid P. aeruginosa of diverse LPS phenotypes, and preferentially augments the cellular response to rough P. aeruginosa endotoxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, Expression and Characterization of Recombinant Exotoxin A-Flagellin Fusion Protein as a New Vaccine Candidate against Pseudomonas aeruginosa Infections

Background: Infections due to Pseudomonas aeruginosa are among the leading causes of morbidity and mortality in patients who suffer from impaired immune responses and chronic diseases such as cystic fibrosis. At present, aggressive antibiotic therapy is the only choice for management of P. aeruginosa infections, but emergence of highly resistant strains necessitated the development of novel alt...

متن کامل

Induction of Specific Humoral Immune Response in Mice against a Pseudomonas aeruginosa Chimeric PilQ/PilA Protein

Background: Pseudomonas aeruginosa, an opportunistic pathogen, is a common cause of healthcare-associated infections in immunocompromised individuals. The rapid emergence of multidrug-resistant strains has made P. aeruginosa infections progressively difficult to treat. In this study we evaluated the effect of a chimeric protein containing a P. aeruginosa PilQ fragment and the PilA disulfide loo...

متن کامل

Polysaccharide surface antigens expressed by nonmucoid isolates of Pseudomonas aeruginosa from cystic fibrosis patients.

We tested nonmucoid Pseudomonas aeruginosa isolates obtained from cystic fibrosis (CF) patients for the expression of lipopolysaccharide (LPS) serotype antigens, serum sensitivity, and production of mucoid exopolysaccharide (MEP). When all nonmucoid isolates were compared with a set of random mucoid isolates, 20 of 52 (38%) nonmucoid isolates were typable and serum resistant, compared with 13 o...

متن کامل

Outer Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance

Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in S...

متن کامل

In silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1

Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2003